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Method for distinguishing between ordered and chaotic orbits in four-dimensional maps

N. Voglis, G. Contopoulos, and C. Efthymiopoulos
Department of Astronomy, University of Athens, Panepistimiopolis, GR 157 84-Athens, Greece

~Received 15 July 1997; revised manuscript received 2 September 1997!

The usual methods for distinguishing ordered and chaotic orbits in three-dimensional~3D! Hamiltonian
systems, or 4D maps, are either inefficient~because we cannot visualize 4D figures!, or slow ~e.g., the
calculation of Lyapunov characteristic numbers!. Here we provide an efficient and fast method, based on the
spectra of stretching numbers~short-time Lyapunov characteristic numbers!, or helicity angles~angles of
infinitesimal deviations from an orbit with a fixed direction!. The spectra for two different initial deviations are
the same for chaotic orbits, but different for ordered orbits. We apply this method to a difficult case of weak
chaos~small Lyapunov characteristic number!, and prove its advantages with respect to other methods. Finally
we explain the different behavior of ordered and chaotic orbits theoretically.@S1063-651X~98!08801-1#

PACS number~s!: 05.45.1b, 46.10.1z
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I. INTRODUCTION

The distinction between ordered and chaotic motions
particularly difficult in systems of three degrees of freedo
because we cannot visualize a four-dimensional~4D! Poin-
carésurface of section. Of course one can make such a
tinction by calculating the Lyapunov characteristic numb
L of each orbit. But this method is very time consumin
because one usually needs very long calculations. Furt
more the evaluation ofL sometimes may lead to uncerta
answers because of the effect of stickiness. Thus a fa
method based on short-time calculations is urgently nee

In two recent papers@1,2#, we discussed the spectra
‘‘stretching numbers’’ and ‘‘helicity angles’’ of ordered an
chaotic orbits in systems of two- and three-degrees of fr
dom. Consider an initial conditionx0 on the Poincare´ surface
of section and an initial deviationj0 from x0. Let their re-
spective Poincare´ map iterates bexi and ji , i 51,2,3, . . . .
The stretching number is the logarithm of the ratio of t
infinitesimal deviationsuji u and uji 11u, at successive point
xi andxi 11,

ai5 ln
uji 11u
uji u

. ~1!

This is, in fact, a short-time~period-1! Lyapunov character-
istic number. Short-time Lyapunov characteristic numb
have been used by several authors since 1983@3–8#. In par-
ticular period-1 Lyapunov characteristic numbers were int
duced by Froeschle´, Froeschle´, and Lohinger@9# and Voglis
and Contopoulos@1#.

On the other hand, the helicity angle in a system of tw
degrees of freedom is the anglef i between an infinitesima
deviationji with a fixed direction, e.g., thex axis.

In the case of a 4D mapxi ( i 51, 2, 3, and 4! on a
Poincare´ surface of section we define three helicity angl
e.g., the anglesf1i , f2i , and f4i of the projection of the
vector ji on the planes (x1 ,x3), (x2 ,x3), and (x4 ,x3) with
the axisx3.

The spectra of stretching numbers and helicity angles
the distributions of thea’s andf ’s. The spectra of differen
chaotic orbits in a connected chaotic domain are invaria
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i.e. independent of the initial conditionx0 and of the initial
deviationj0. On the other hand, the spectra of ordered orb
depend on the initial conditionsx0 and deviationsj0. In the
present paper we study this difference between chaotic
ordered spectra, which gives an easy and efficient metho
distinguish between ordered and chaotic motion.

II. TWO COUPLED STANDARD MAPS

We consider the case of two coupled standard maps:

x185x11x28,

x285x21
K

2p
sin2px12

b

p
sin2p~x32x1!,

~2!

x385x31x48 ~mod 1!,

x485x41
K

2p
sin2px32

b

p
sin2p~x12x3!,

where K is the nonlinearity parameter andb the coupling
constant.

We takeK53 and various values ofb. For b50 the
maps (x1 ,x2) and (x3 ,x4) are uncoupled. Each map contain
a large island of stability embedded in a chaotic sea~Fig. 1!.
Most chaotic orbits, like orbit~1!, fill the chaotic sea, while
ordered orbits, like orbit~3!, form invariant curves in the
island of stability.

If b50.1 the orbit (x1 ,x2 ,x3 ,x4) with the initial condi-
tions of orbit ~1! is projected on the plane (x1 ,x2) almost
completely ergodically@Fig. 2~a!#. The same is true with the
projections on the planes (x1 ,x3), (x1 ,x4), (x2 ,x3), (x2 ,x4),
and (x3 ,x4).

The finite time Lyapunov characteristic number

Lt5
ln~ uju/uj0u!

t
~3!

for this orbit is given as a function of log10t in Fig. 2~b!,
wheret is a discrete time, i.e., the number of iterations of t
372 © 1998 The American Physical Society
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57 373METHOD FOR DISTINGUISHING BETWEEN ORDERED . . .
map~2!. The direction of the~very small! initial deviationj
is given by the ratioszk5jk0 /j30, k51, 2, 3, and 4, where
z3 is always 1.

The usual Lyapunov characteristic number

L5 lim
t→`

Lt ~4!

is aboutL50.75. We see that this value is reached appro
mately after 104 iterations. However, for smaller timest the
values ofLt vary considerably.

Another orbit in the same chaotic domain@orbit ~2! in Fig.
2~a!# gives the same limitL50.75 after aboutt5104 itera-
tions. However, the variations ofLt for smaller t are very
different from those of the original orbit~1!.

On the other hand if we take the same orbit~1! but a
different initial deviation we find essentially the same var
tions of Lt after an initial transient period of only aboutt
510 iterations@the solid line close to orbit~1! in Fig. 2~b!#.

FIG. 1. The map (x1 ,x2) for K53 andb50. The chaotic orbit
~1! ~initial conditionsx150.1, x250.5, x350.2, andx450.6) fills
most of the square (x1 ,x2) and the same region in the (x3 ,x4)
plane. The ordered orbit~3! ~initial conditionsx150.55, x250.1,
x350.62, and x450.2) forms invariant curves on both plane
(x1 ,x2) and (x3 ,x4). The initial conditions (x1 ,x2) and (x3 ,x4) of
both orbits are marked as stars.
i-

-

Similarly, a different initial deviation from orbit~2! gives the
same variations ofLt as orbit ~2!, after a short initial tran-
sient period@the dashed line close to orbit~2! in Fig. 2~b!#.

The spectra of stretching numbersa, and helicity angles
f1 of orbit ~1! for a deviationz15z25z35z451, and 104

iterations are shown in Figs. 3~a! and 3~b!. The spectra for
deviationsz15z252 andz35z451 are shown as dots. W
see that, aftert5104 iterations, the spectra for the same orb
but different deviations are exactly the same. The sam
true for orbit~2!. However, orbits~1! and~2! with the same
deviationszk give somewhat different spectra after 104 itera-
tions @Fig. 3~c!#. But if we extend our calculations for 105

iterations@Fig. 3~d!#, the spectra are almost identical. In fa
the two spectra tend to the same invariant spectrum of
large chaotic sea. The same phenomena appear for the h
ity anglesf2 andf4.

In contrast to the above chaotic orbits, the spectra of
dered orbits are different, not only for different orbits, b
also for different deviations from a given orbit. This is se
in the spectra of Figs. 4~b! and 4~c!, that correspond to the
same constantsK53 andb50.1 as the previous orbits, bu
initial conditions x150.55, x250.1, x350.62, andx450.2
@orbit ~3!#. The points (x1 ,x2) and (x3 ,x4) both belong to
the island of stability of Fig. 1, and define an invariant cur
on each plane. When the coupling constant isb50.1 the
orbit on the plane (x1 ,x2) fills a ring @Fig. 4~a!#. This is not
due to diffusion, but to a projection of a toroidal surface.

The spectra of stretching numbersa and helicity angles
f1 for initial deviationsz15z25z35z451 andt5105 itera-
tions are given as solid lines in Figs. 4~b! and 4~c!, while the
spectra for initial deviationsz15z252 and z35z451 are
given as dashed lines. We see that the two spectra are
different.

On the other hand, the spectra along each orbit~with the
same initial deviation! are invariant. In fact, if we take the
last t5105 periods out of a total oft5109 periods, we find
exactly the same spectra as for the first 105 periods@dots in
Figs. 4~b! and 4~c!#. Thus we see that the spectra of chao
orbits are independent of the initial deviations from the sa
orbit, while the spectra of ordered orbits are different f
different initial deviations from the same orbit.
tion

FIG. 2. ~a! The projection of map~2! on the plane (x1 ,x2) for K53 and b50.1. The initial conditions of orbits~1! (x150.1, x2

50.5,x350.2, andx450.6) and~2! (x150.8,x250.6,x350.7, andx450.5) are marked. Both orbits give essentially the same distribu
of points.~b! The finite-time Lyapunov characteristic number as a function of log10(t), wheret is the time~number of iterations! for orbit
~1! and two initial deviations:z15z25z35z451 andz15z252, z35z451 ~upper and lower solid lines!, and for orbit~2! and the same
initial deviations~lower and upper dashed lines!.
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FIG. 3. The spectra of~a!
stretching numbersa, and ~b! he-
licity anglesf1 for orbit ~1! cal-
culated fort5104 iterations with
initial deviations z15z25z35z4

51 ~solid line! and z15z252,
z35z451 ~dots!. ~c! The spectra
of stretching numbers for the or
bits ~1! ~solid line! and ~2!
~dashed line! for the same initial
deviations, calculated fort5104

iterations. ~d! The same spectra
calculated fort5105 iterations.
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Our method can distinguish between ordered and cha
orbits after a much shorter time than needed to calculate
Lyapunov characteristic numbers. For example in the cas
the chaotic orbits of Fig. 2~b!, the time required to stabilizeL
is 104–105 periods, while for ordered orbitsL decreases al
most like t21. But the closeness or significant difference
two spectra with the same initial conditions and differe
deviationsj can be established well before the spectra h
reached their final form, e.g., after only 53102 periods
@Figs. 5~a! and 5~b!#. In the chaotic case@Fig. 5~a!# the two
deviations give almost identical spectra, while in the orde
case the differences are quite significant@Fig. 5~b!#. On the
tic
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f
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e

d

other hand, the computational cost in calculating the spe
is practically the same as that needed to calculateL for the
same time, because both require the integration of the va
tional equations.

In order to check this method further, we now study
orbit that shows only a little chaos, after a long time. This
an orbit@Fig. 6~a!# with the sameK53 and the same initia
conditions as in Fig. 4, but withb50.3051 instead ofb
50.1. This orbit fills a region@Fig. 6~a!# similar to that of
Fig. 4~a!. However its spectra, calculated for 105 periods, are
very different@Figs. 6~b! and 6~c!# from the spectra withb
50.1 @compare Figs. 6~b! and 6~c! with Figs. 4~b! and 4~c!#.
e
FIG. 4. ~a! The regular orbit~3! for K53 andb50.1 ~initial conditions in Fig. 1!, calculated for 105 iterations, projected on the plan
(x1 ,x2). The spectra of~b! stretching numbers and~c! helicity anglesf1, for t5105 iterations and initial deviationsz15z25z35z451
~solid line! andz15z252, z35z451 ~dashed lines!. The two spectra of each figure are quite different. The dots in~b! and~c! represent the
spectra of the last 105 iterations out of 109 iterations.
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FIG. 5. The spectra of stretching numbers fort553102 iterations and initial deviationsz15z25z35z451 ~solid line! and z15z2

52, z35z451 ~dashed line! for ~a! the chaotic orbit~1! @Fig. 2~a!# and ~b! the ordered orbit~3! @Fig. 4~a!#.
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The spectra shown by solid and dashed lines in Figs. 6~b!
and 6~c! correspond to different deviations, and they are o
slightly different, and, as the integration time increases, th
differences tend to zero. This is seen in Fig. 7 which giv
the spectra ofa andw1 for 23106 iterations.

The distinction between the ordered spectra of Fig. 4
the chaotic spectra of Fig. 6 is remarkable because the
orbits look quite similar. Furthermore, the finite tim
Lyapunov characteristic numbers of the two orbits~Fig. 8!
are very close to each other for 102,t,108, decreasing
roughly linearly in a logarithmic scale, log10(Lt) versus
log10t, along a line parallel to the diagonal. This is consist
with a power deviationj5ctp1j0, characteristic of an or-
dered orbit. In fact in such a case the values of log10Lt tend
to vary like 2 log10t. However, aftert5108 iterations the
values ofLt in the caseb50.3051 tend to stabilize at
limiting value L5431027, while in the caseb50.1 the
values ofLt decrease, in the same way as before, tow
zero.

We conclude that the distinction between the ordered
bit (b50.1) and the chaotic orbit (b50.3051) requires
about t5109 iterations if we use the criterion of th
Lyapunov characteristic number, while it can be seen a
only 105 iterations~or even less! if we use the fact that the
spectra of the same orbit with different deviations are diff
ent in the ordered case~Figs. 4~b! and 4~c!#, while they are
the same in the chaotic case~Figs. 6~b! and 6~c!#.
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The fact that the spectrum is invariant with respect to
initial orientation of the infinitesimal deviationj0 for chaotic
orbits, but not for ordered orbits, reflects a fundamental d
ference between these two kinds of motion. Two sets of
tial conditions (x0 ,j0) and (x0 ,j08) produce two different
sequences (xi ,ji) and (xi ,ji8), i 51,2,3, . . . . In thecase of
ordered orbits the two sequences are different for arbitra
long times, but in the case of chaotic orbits the two s
quences converge to a unique sequence after a time~number
of iterations! tc . ~In our examples of Figs. 5 and 6,tc.102

and tc.105, respectively.!
For orbits exhibiting Arnold diffusion, there is a ver

slow convergence to a unique spectrum, but the time
quired is usually much larger than any realistic time scale~in
Ref. @2#, we found that in most casestc.1010 periods!. Such
orbits behave like ordered orbits with spectra depending
the initial orientation ofj for all times of practical interest.

In our example of Fig. 6, the timet5105 is much shorter
than 109, but it is still somewhat long. This relatively lon
time is required because of the very small chaoticity of
orbit with b50.3051~the Lyapunov characteristic number
only L5431027).

In other cases, where chaos is stronger, the distinc
between ordered and chaotic orbits can be found much fa
In a previous paper@10#, we could distinguish ordered an
chaoticdomainsafter only t520–10 iterations, by calculat
re
FIG. 6. ~a!–~c! The same as in Figs. 4~a!– 4~c! but with b50.3051. Orbit~3! in this case is slightly chaotic. The two spectra in this figu
are very close to each other.
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FIG. 7. The spectra of~a!
stretching numbers and~b! helic-
ity anglesf1 of the ~chaotic! orbit
~3! with the same deviations as i
Figs. 4 and 6, calculated fort52
3106 iterations. The spectra ar
almost completely identical.
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ing the average values of the stretching numbers^a& t ~short-
time Lyapunov characteristic numbers! and helicity angles
^f& t , for ten iterations after a transient interval of ten iter
tions. However, the distinction was based on the proper
of intervalsof ordered and chaotic orbits and not individu
orbits. On the other hand, the new method refers to in
vidual orbits and it is very efficient particularly in thin cha
otic layers, whereL is very small.

Another method for distinguishing between ordered a
chaotic orbits was developed by Laskar and co-work
@11,12#. This method performs a ‘‘frequency analysis’’ of th
Fourier spectrum of an orbit. Ordered orbits have alm
constant frequencies, while the frequencies of chaotic or
vary in an irregular way, over time and space.

We have applied a fast Fourier transform withN5219

5524 288 periods at the begining and at the end of9

iterations of both the regular orbit (K53, b50.1) and the
chaotic orbit (K53, b50.3051). No drift in the main fre-
quencies was observed for both orbits up to an accurac
231026. A more accurate analysis, with the frequen
analysis algorithm, after 109 periods, might give a change o
the frequency by less than 231026. On the other hand ou
method distinguishes clearly the chaotic from the orde
case after less than 105 periods.

FIG. 8. The finite time Lyapunov characteristic numbers of t
orbits withK53 and the same initial conditions@those of orbit~3!#,
and the same initial deviationsz15z25z35z451, for b50.1
~solid line! and 0.3051~dashed line!.
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III. THEORETICAL EXPLANATION

We know that in 3D systems or 4D maps, ordered orb
lie on invariant 2D tori. The projection of such a torus on a
3D space of the 4D Poincare´ surface of section is also a 2D
torus.

An arbitrary initial deviationj0 of an ordered orbit be-
comes tangent to the 2D torus after a few iterations. Ho
ever, in general two different initial deviationsj0 andj08 lead
to different sequences of deviationsji andji8 on the tangent
planes at the pointsxi ~Fig. 9!. Thus the spectra are differen
Only in exceptional cases the tangent vectors may happe
be approximately the same. In such cases another ran
initial deviationj09 would give a different sequence.

On the other hand, if an orbit is chaotic two arbitra
deviationsj0 andj08 give essentially the same spectra. Th
is due to the fact that the deviationsji , after a short initial
transient period, lie almost exactly along the dominant dir
tion at each point. By ‘‘dominant direction’’ we mean th
most frequent directionzi near each pointxi of an orbit. This
can be seen easily in a case of two dimensions (x1 ,x2) ~i.e.,
b50). Assume that the initial pointx0 is along an unstable
asymptotic curve~unstable manifold! of the standard map
Whatever the initial deviationj0, after a few iterations the
deviationsji are along the unstable asymptotic curve~Fig.
10!. We see that near each point, sayxi , there is a dominant
helicity anglef i . However, in some regions~e.g., inside the
small square of Fig. 10! we see some turning points, whe

FIG. 9. The deviationj0 from an ordered orbit becomes tange
to a 2D torus, after a few iterations, at successive pointsxi andxi 11

~vectorsji andji 11). A different initial deviationj08 from the same
orbit gives in general different deviationsji8 and ji 118 at the same
pointsxi andxi 11.
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the direction of the unstable asymptotic curve changes c
tinuously fromf i to 180°1f i , taking all intermediate val-
ues of the helicity anglef. Such turning points appear ev
erywhere in phase space if we calculate the unsta
asymptotic curve long enough. During a long period t
value of f inside a small square takes all possible valu
from 2180° to 180°, but most of the time it takes one dom
nant value. Thus the spectrum is characterised by the
quency of appearance of thedominantdirectionsf i at suc-
cessive pointsxi .

The unstable asymptotic curve of Fig. 10 passes a
trarily close to every point of the chaotic domain. Therefo
a different initial conditionx08 has its imagesxi8 very close to

FIG. 10. The unstable asymptotic curve of the main perio
orbit (x15x250) in map~3! for K510 andb50 fills the chaotic
domain of the (x1 ,x2) plane. Note the turning points in the sma
square (0.70,x,0.90, 0.70,y,0.90).
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the same asymptotic curve of Fig. 10. Furthermore any
viation j08 from this orbit, after a short transient period, b
comes parallel to the direction of the asymptotic curve cl
est to the pointxi8. This means that we should have the sa
spectrum as that of an orbit starting atx0. However, the
sequence of helicity anglesf i8 ~and stretching numbersai8)
is different from that ofx0. This means that the time neede
for the two spectra to agree closely may be somewhat lo
But the convergence of two different deviationsj0 from the
sameorbit xi is much faster.

Similar considerations apply to systems of four dime
sions. In this way we explain the fast agreement of the sp
tra of each orbit@e.g., orbits~1! or ~2! in Fig. 3# with differ-
ent initial deviations, but the slower convergence of t
spectra of the different orbits@~1! and ~2!# @compare Figs.
3~a!, 3~c!, and 3~d!#. The same arguments explain the fa
convergence ofLt in Fig. 2~b! for two different deviations
from the sameorbit, and the slower convergence ofLt for
two differentorbits.

Thus we explain qualitatively the characteristics of t
spectra in 4D maps. In particular, we explain the fundam
tal difference between the spectra of ordered orbits@Figs.
4~b! and 4~c!# and chaotic orbits@Figs. 6~b! and 6~c!#. The
spectra of stretching numbers and helicity angles of a giv
orbit, but different initial deviations, are different in the cas
of ordered orbits, while they are the same in the case
chaotic orbits.
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