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Method for distinguishing between ordered and chaotic orbits in four-dimensional maps
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The usual methods for distinguishing ordered and chaotic orbits in three-dimen&@)aHamiltonian
systems, or 4D maps, are either inefficigbecause we cannot visualize 4D figyresr slow (e.g., the
calculation of Lyapunov characteristic numbeindere we provide an efficient and fast method, based on the
spectra of stretching numbefshort-time Lyapunov characteristic numbersr helicity angles(angles of
infinitesimal deviations from an orbit with a fixed directjoithe spectra for two different initial deviations are
the same for chaotic orbits, but different for ordered orbitée apply this method to a difficult case of weak
chaos(small Lyapunov characteristic numbeand prove its advantages with respect to other methods. Finally
we explain the different behavior of ordered and chaotic orbits theoreti¢Si063-651X98)08801-1

PACS numbdps): 05.45+b, 46.10+z

. INTRODUCTION i.e. independent of the initial conditiax, and of the initial
deviation&,. On the other hand, the spectra of ordered orbits

The distinction between ordered and chaotic motions islepend on the initial conditions, and deviations,. In the
particularly difficult in systems of three degrees of freedom,present paper we study this difference between chaotic and
because we cannot visualize a four-dimensidad)) Poin-  ordered spectra, which gives an easy and efficient method to
caresurface of section. Of course one can make such a dististinguish between ordered and chaotic motion.
tinction by calculating the Lyapunov characteristic numbers
L of each orbit. But this method is very time consuming, Il. TWO COUPLED STANDARD MAPS
because one usually needs very long calculations. Further-
more the evaluation of sometimes may lead to uncertain ~ We consider the case of two coupled standard maps:
answers because of the effect of stickiness. Thus a faster
method based on short-time calculations is urgently needed. X1=X1+X3,

In two recent paper$l,2], we discussed the spectra of

“stretching numbers” and “helicity angles” of ordered and . K . B .
chaotic orbits in systems of two- and three-degrees of free- Xo=XpF 5—SIN2mXy = —SIN27 (X3~ X1),
dom. Consider an initial conditioxy on the Poincarsurface 2
of section and an initial deviatiog, from x,. Let their re- / ,

: L ; ) X3=X3+X mod J),
spective Poincarenap iterates be; and &, i=1,2,3 ... . 3= XX 3
The stretching number is the logarithm of the ratio of the K
infinitesimal deviationg&| and|& . 4|, at successive points X)= X4+ —sin2wx3—ésin2w(xl—x3),
X; andx . 1, 2m ™

|& 4] whereK is the nonlinearity parameter an@l the coupling
a;=In i (1) constant.
I

We takeK=3 and various values oB. For =0 the

This is, in fact, a short-timéperiod-) Lyapunov character- Maps &1,X,) and (x3,x4) are uncoupled. Each map contains
istic number. Short-time Lyapunov characteristic numbers large island of stability embedded in a chaotic §€g. 1).
have been used by several authors since :[98.3] In par- Most chaotic orbits, like orbitl), fill the chaotic sea, while
ticular period-1 Lyapunov characteristic numbers were intro0rdered orbits, like orbi(3), form invariant curves in the
duced by Froeschjéroeschigand Lohingef9] and Voglis  island of stability.
and Contopoulo$1]. If B=0.1 the orbit &;,X,,X3,X4) with the initial condi-
On the other hand, the helicity angle in a system of two-tions of orbit (1) is projected on the planex{,x,) almost
degrees of freedom is the ange between an infinitesimal completely ergodicallyFig. 2a)]. The same is true with the
deviation£ with a fixed direction, e.g., the axis. projections on the planes{,x3), (X1,X4), (X2,X3), (X2,X4),
In the case of a 4D map; (i=1, 2, 3, and #on a and 3,xy).
Poincaresurface of section we define three helicity angles, The finite time Lyapunov characteristic number
e.g., the angleg)q;, &,, and ¢, of the projection of the
vector & on the planesxy,Xs), (X2,X3), and (4,X3) with r _In(l&)/| &) 3
the axisx;. t t
The spectra of stretching numbers and helicity angles are
the distributions of the&’'s and ¢'s. The spectra of different for this orbit is given as a function of leg in Fig. 2(b),
chaotic orbits in a connected chaotic domain are invariantwheret is a discrete time, i.e., the number of iterations of the
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Similarly, a different initial deviation from orbif2) gives the
same variations ofZ; as orbit(2), after a short initial tran-
sient periodthe dashed line close to orli2) in Fig. 2(b)].

The spectra of stretching numbesand helicity angles
¢, of orbit (1) for a deviationz,=z,=z3=2,=1, and 18
iterations are shown in Figs(& and 3b). The spectra for
deviationsz,=z,=2 andz;=2z,=1 are shown as dots. We
see that, after= 10" iterations, the spectra for the same orbit
but different deviations are exactly the same. The same is
true for orbit(2). However, orbitg1) and(2) with the same
deviationsz, give somewhat different spectra after*itera-
tions [Fig. 3(c)]. But if we extend our calculations for 10
iterations[Fig. 3(d)], the spectra are almost identical. In fact
the two spectra tend to the same invariant spectrum of the
large chaotic sea. The same phenomena appear for the helic-
ity angles¢, and ¢,.

In contrast to the above chaotic orbits, the spectra of or-
dered orbits are different, not only for different orbits, but
also for different deviations from a given orbit. This is seen
in the spectra of Figs.(#) and 4c), that correspond to the
same constant€ =3 andB=0.1 as the previous orbits, but
initial conditionsx;=0.55, x,=0.1, x3=0.62, andx,=0.2
[orbit (3)]. The points k;,X5) and (x3,X4) both belong to
the island of stability of Fig. 1, and define an invariant curve
on each plane. When the coupling constaniBis 0.1 the
orbit on the planeX;,x,) fills a ring [Fig. 4(a)]. This is not
due to diffusion, but to a projection of a toroidal surface.

£=lim £, (4) The spectra of stretching numbessand helicity angles
t—oo ¢, for initial deviationsz, =z,=z3=2z,=1 andt= 10" itera-
tions are given as solid lines in Figgb$ and 4c), while the
is aboutL=0.75. We see that this value is reached apprOXispectra for initial deviationg,=z,=2 andzz;=z,=1 are
mately after 10 iterations. However, for smaller time¢she given as dashed lines. We see that the two spectra are quite
values ofL; vary considerably. different.

Another orbit in the same chaotic doméarbit (2) in Fig. On the other hand, the spectra along each dvkith the
2(a)] gives the same limiL=0.75 after about=10" itera-  same initial deviationare invariant. In fact, if we take the
tions. However, the variations of, for smallert are very lastt=10 periods out of a total of=10° periods, we find
different from those of the original orbitL). exactly the same spectra as for the first periods[dots in

On the other hand if we take the same orfdij but a  Figs. 4b) and 4c)]. Thus we see that the spectra of chaotic
different initial deviation we find essentially the same varia-orbits are independent of the initial deviations from the same
tions of £, after an initial transient period of only abotit orbit, while the spectra of ordered orbits are different for
=10 iterationg the solid line close to orbitl) in Fig. 2(b)]. different initial deviations from the same orbit.

FIG. 1. The mapX;,Xx,) for K=3 andB=0. The chaotic orbit
(2) (initial conditionsx;=0.1, x,=0.5,x3=0.2, andx,=0.6) fills
most of the squarexg,x,) and the same region in thex{,x,)
plane. The ordered orbiB) (initial conditionsx;=0.55,x,=0.1,
x3=0.62, andx,=0.2) forms invariant curves on both planes
(X1,X2) and (X3,X4). The initial conditions X, ,X,) and (x3,x,) of
both orbits are marked as stars.

map (2). The direction of thegvery smal) initial deviation &
is given by the ratiog,= &,9/&39, k=1, 2, 3, and 4, where
Z3 is always 1.

The usual Lyapunov characteristic number

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. (a8 The projection of mag2) on the plane X;,x,) for K=3 and 8=0.1. The initial conditions of orbit$l) (x;=0.1, X,
=0.5,x3=0.2, andx,= 0.6) and(2) (x;=0.8,x,=0.6,x3=0.7, andx,= 0.5) are marked. Both orbits give essentially the same distribution
of points.(b) The finite-time Lyapunov characteristic number as a function ofy(0ly wheret is the time(number of iterationsfor orbit
(1) and two initial deviationsz,=z,=z;=z,=1 andz;=z,=2, z;=2,=1 (upper and lower solid lingsand for orbit(2) and the same
initial deviations(lower and upper dashed lines



374 N. VOGLIS, G. CONTOPOULOS, AND C. EFTHYMIOPOULOS 57

1.0 o Lo vt a gy Lid v yoas1s [ ‘_ IAO 0.04 o A b it 31 14 a1y Lo 1 _0.04
(a) : (b} ;
0.8 — f—o.a E F
] E 0.03 Fo.03
0.6 - ;0.6 ] E
—_— | L —_—~ ~ F
= So.02 ] Fo.02
wn ] E 177} ] s
0.4 3 Fo.4
E : 0.01 Fo.01 FIG. 3. The spectra of(a)
0.z 4 Fo. ] b .
] Fo2 ] : stretching numbera, and (b) he-
3 E ] b licity angles ¢, for orbit (1) cal-
0.0 ] Fo. 00 e e Fo. = i i i
& i 3 T 0.0 0.00 Frrrrr b e 0.00 culated fort=10" iterations with
a © initial deviations z,=2z,=23=2,

=1 (solid line and z;=2z,=2,
z3=2,=1 (dot9. (c) The spectra
of stretching numbers for the or-

B -0 o0 L 20 . bits (1) (solid line and (2)
(@ 3 (dashed ling for the same initial
] g deviations, calculated fot=10*
o84 F08 iterations. (d) The same spectra
E i £ calculated fort= 10" iterations.
0.8 —i :0 8
& ]
@ 3 §
0.4—: ;0.4
0.2 —E r0.2
0.0 E ................. LRG0 2 e 0.0
=-2.0 -1.0 0.0 1.0 2.0
a

Our method can distinguish between ordered and chaotiother hand, the computational cost in calculating the spectra
orbits after a much shorter time than needed to calculate this practically the same as that needed to calculafer the
Lyapunov characteristic numbers. For example in the case afame time, because both require the integration of the varia-
the chaotic orbits of Fig.(®), the time required to stabiliz€  tional equations.
is 10'~1C periods, while for ordered orbit§ decreases al- In order to check this method further, we now study an
most liket 1. But the closeness or significant difference of orbit that shows only a little chaos, after a long time. This is
two spectra with the same initial conditions and differentan orbit[Fig. 6(@)] with the sameK =3 and the same initial
deviations¢ can be established well before the spectra haveonditions as in Fig. 4, but witlB=0.3051 instead of3
reached their final form, e.g., after onlyx8.0° periods =0.1. This orbit fills a regiorfFig. 6@] similar to that of
[Figs. 5a) and 3b)]. In the chaotic casfFig. 5a)] the two  Fig. 4a). However its spectra, calculated for°lferiods, are
deviations give almost identical spectra, while in the orderedrery different[Figs. &b) and &c)] from the spectra wittB
case the differences are quite significifig. 5b)]. On the  =0.1[compare Figs. @) and Gc) with Figs. 4b) and 4c)].
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FIG. 4. (a) The regular orbi(3) for K=3 andB=0.1 (initial conditions in Fig. 1, calculated for 1®iterations, projected on the plane
(X1,X). The spectra ofb) stretching numbers an@) helicity anglesg,, for t=10 iterations and initial deviations;=z,=z;=2,=1
(solid line) andz,=z,=2, z3=2,=1 (dashed lines The two spectra of each figure are quite different. The dotb)iand(c) represent the
spectra of the last P0terations out of 19 iterations.
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FIG. 5. The spectra of stretching numbers fer5x 107 iterations and initial deviationg,=z,=z;=2,=1 (solid line) and z,=z,
=2,23=2,=1 (dashed lingfor (a) the chaotic orbif1) [Fig. 2(a)] and(b) the ordered orbit3) [Fig. 4a)].

The spectra shown by solid and dashed lines in Figs. 6 The fact that the spectrum is invariant with respect to the
and @c) correspond to different deviations, and they are onlyinitial orientation of the infinitesimal deviatio#, for chaotic
slightly different, and, as the integration time increases, theibrbits, but not for ordered orbits, reflects a fundamental dif-
differences tend to zero. This is seen in Fig. 7 which givegerence between these two kinds of motion. Two sets of ini-
the spectra ofx and ¢, for 2x 10° iterations. _ tial conditions &,,&) and (x,&) produce two different

The distinction between the ordered spectra of Fig. 4 angequencesx( &) and &,£),i=1,2,3 ... . In thecase of

the chaotic spectra of Fig. 6 is remarkable because the tw rdered orbits the two sequences are different for arbitrarily

orbits look _quite S.'”.‘"ar- Furthermore, the f|n|.te time long times, but in the case of chaotic orbits the two se-
Lyapunov characteristic numbers of the two orhisg. 8 ) :
guences converge to a unique sequence after a(tiomaber

are very close to each other for 20t<10®, decreasing ) . : B

roughly linearly in a logarithmic scale, logL;) versus of ('jteritfgss te- (In purl examples of Figs. 5 and =10

log,¢t, along a line parallel to the diagonal. This is consisten@"dtc= N respe.ct_n./e Y. e )

with a power deviatiort=ctP+ &,, characteristic of an or- For orbits exhibiting Arnold diffusion, there is a very
slow convergence to a unique spectrum, but the time re-

dered orbit. In fact in such a case the values of |6gtend g - e .
to vary like —log,¢t. However, aftert=10% iterations the quired is usually much larger than any realistic time s¢ae

values of £, in the casef=0.3051 tend to stabilize at a Ref.[2], we found that in most cases> 10*° periods. Such
limiting value £=4x10"7, while in the case8=0.1 the Orbits behave like ordered orbits with spectra depending on

values ofﬁt decrease, in the same way as before, tOWardhe initial orientation Off for all times of practical interest.
zero. In our example of Fig. 6, the time=10° is much shorter

We conclude that the distinction between the ordered orthan 10, but it is still somewhat long. This relatively long
bit (8=0.1) and the chaotic orbitd=0.3051) requires time is required because of the very small chaoticity of the
about t=10° iterations if we use the criterion of the orbit with 8=0.3051(the Lyapunov characteristic number is
Lyapunov characteristic number, while it can be seen afteonly £=4x10"7).
only 10 iterations(or even leskif we use the fact that the In other cases, where chaos is stronger, the distinction
spectra of the same orbit with different deviations are differ-between ordered and chaotic orbits can be found much faster.
ent in the ordered cag&igs. 4b) and 4c)], while they are In a previous papefl10], we could distinguish ordered and
the same in the chaotic cafléigs. b) and Gc)]. chaoticdomainsafter onlyt=20-10 iterations, by calculat-
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FIG. 6. (a)—(c) The same as in Figs(&- 4(c) but with 8=0.3051. Orbit3) in this case is slightly chaotic. The two spectra in this figure
are very close to each other.
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ing the average values of the stretching numtiaps (short- lll. THEORETICAL EXPLANATION

time Lyapunov characteristic numbgrand helicity angles We know that in 3D systems or 4D maps, ordered orbits

()., for ten iterations after a transient interval of ten itera-j;q o, jnvariant 2D tori. The projection of such a torus on any
tions. However, the distinction was based on the propertieg, space of the 4D Poincagairface of section is also a 2D
of intervals of ordered and chaotic orbits and not individual 5 5.

orbits. On the other hand, the new method refers to indi- ap arbitrary initial deviationg, of an ordered orbit be-

vidual orbits and it is very efficient particularly in thin cha- comes tangent to the 2D torus after a few iterations. How-
otic layers, whereC is very small. ever, in general two different initial deviatiogs and &) lead

Another method for distinguishing between ordered andy gifferent sequences of deviatioisand £ on the tangent
chaotic orbits was developed by Laskar and co-workerganes at the points (Fig. 9). Thus the spectra are different.
[11,12. This method performs a “frequency analysis” of the opy in exceptional cases the tangent vectors may happen to
Fourier spectrum of an orbit. Ordered orbits have almoshe approximately the same. In such cases another random
constant frequencies, while the frequencies of chaotic orbitgitial deviation & would give a different sequence.
vary in an irregular way, over time and space. On the other hand, if an orbit is chaotic two arbitrary

We have applied a fast Fourier transform with=2'"  geviationsg, and £ give essentially the same spectra. This
=524 288 periods at the begining and at the end df 10is due to the fact that the deviatiods, after a short initial
iterations of both the regular orbiK(=3, 8=0.1) and the transient period, lie almost exactly along the dominant direc-
chaotic orbit K=3, =0.3051). No drift in the main fre- tion at each point. By “dominant direction” we mean the
quencies was observed for both orbits up to an accuracy afiost frequent directios, near each point; of an orbit. This
2Xx10°% A more accurate analysis, with the frequencycan be seen easily in a case of two dimensionsxy) (i.e.,
analysis algorithm, after 2Qeriods, might give a change of B=0). Assume that the initial point, is along an unstable
the frequency by less thanx210®. On the other hand our asymptotic curvelunstable manifold of the standard map.
method distinguishes clearly the chaotic from the orderedVhatever the initial deviatior,, after a few iterations the
case after less than 1@eriods. deviationsé are along the unstable asymptotic cuiig.

10). We see that near each point, sqy there is a dominant
helicity angle¢; . However, in some region&.g., inside the

'l small square of Fig. J0we see some turning points, where
Fi0

;-10*
;—10*
é—w"
;—10*

£10

10

FIG. 9. The deviatior¥, from an ordered orbit becomes tangent
FIG. 8. The finite time Lyapunov characteristic numbers of twoto a 2D torus, after a few iterations, at successive poingmdx; ,
orbits withK =3 and the same initial conditiofithose of orbit3)], (vectorsg andg , 1). A different initial deviationg) from the same
and the same initial deviationg,=z,=z3=2z,=1, for 8=0.1 orbit gives in general different deviatiods and &, ; at the same
(solid line) and 0.3051(dashed ling pointsx; andx; 1.
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the same asymptotic curve of Fig. 10. Furthermore any de-
viation & from this orbit, after a short transient period, be-
comes parallel to the direction of the asymptotic curve clos-
est to the poink/. This means that we should have the same
spectrum as that of an orbit starting . However, the
sequence of helicity angles; (and stretching numbe)

is different from that ofxy. This means that the time needed
for the two spectra to agree closely may be somewhat long.
But the convergence of two different deviatio§sfrom the
sameorbit x; is much faster.

Similar considerations apply to systems of four dimen-
sions. In this way we explain the fast agreement of the spec-
tra of each orbife.g., orbits(1) or (2) in Fig. 3] with differ-

0.6 : o ent initial deviations, but the slower convergence of the
spectra of the different orbitg1) and (2)] [compare Figs.

FIG. 10. The unstable asymptotic curve of the main periodic3(a)* 3(c), and 3d)_]' T_he same argume_nts EXpIam_ the fast
orbit (x;=x,=0) in map(3) for K=10 andB=0 fills the chaotic ~convergence or, in Fig. 2(b) for two different deviations
domain of the §;,X,) plane. Note the turning points in the small from the sameorbit, and the slower convergence 0f for
square (0.7€x<0.90, 0.76<y<0.90). two differentorbits.

Thus we explain qualitatively the characteristics of the
spectra in 4D maps. In particular, we explain the fundamen-
Nal difference between the spectra of ordered orffigs.

4(b) and 4c)] and chaotic orbit§Figs. Gb) and Gc)]. The

X

the direction of the unstable asymptotic curve changes co
tinuously from¢; to 180°+ ¢;, taking all intermediate val-

ues of the helicity angles. Such turning points appear ev- spectra of stretching numbers and helicity angles of a given

erywhere. in phase space if we galculate the l.mSIablgrbit, but different initial deviations, are different in the case
asymptotic curve long enough. During a long perlod theof ordered orbits, while they are the same in the case of
value of ¢ inside a small square takes all possible value '

from —180° to 180°, but most of the time it takes one domi-SChaOtIC orbits

nant value. Thus the spectrum is characterised by the fre-
guency of appearance of tld®minantdirections¢; at suc-
cessive points; . This research was supported in part by the Greek General

The unstable asymptotic curve of Fig. 10 passes arbiSecretariat for Research and Technolo@®ENED 293/
trarily close to every point of the chaotic domain. Therefore1995. C. E. received support from the Greek Foundation of
a different initial conditiorx} has its images/ very close to  State Scholarshipd.K.Y.).
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